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ISABEL HOPP,c JING ZHOU,c ROUA BATY,d ENRIQUE I. GRAZIANO,e BERNABÉ PROTO MARCO,e
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ABSTRACT

The field of stem cell therapeutics is moving ever closer to widespread application in the
clinic. However, despite the undoubted potential held by these therapies, the balance be-
tween risk and benefit remains difficult to predict. As in any new field, a lack of previous
application in man and gaps in the underlying science mean that regulators and investiga-
tors continue to look forabalancebetweenminimizingpotential riskandensuring therapies
are not needlessly kept from patients. Here, we attempt to identify the important safety
issues, assessing the current advances in scientific knowledge and how they may translate
to clinical therapeutic strategies in the identification and management of these risks. We
also investigate the tools and techniques currently available to researchers during preclin-
ical and clinical development of stem cell products, their utility and limitations, and how
these tools may be strategically used in the development of these therapies. We conclude
that ensuring safety through cutting-edge science and robust assays, coupled with regular
and open discussions between regulators and academic/industrial investigators, is likely to
prove the most fruitful route to ensuring the safest possible development of new prod-
ucts. STEM CELLS TRANSLATIONAL MEDICINE 2015;4:389–400

INTRODUCTION

Stem cell therapies are moving rapidly into
clinical application. Although it is important
that these therapies are advanced into the
clinic, their safety must be continually eval-
uated. Here we outline the known risks
of stem cell therapeutics (supplemental
online Fig. 1) and discuss how they can be
assessed and managed through preclinical
and clinical trials. This review is the output
of an Innovative Medicines Initiative SafeSci-
MET workshop held at the University of
Liverpool.

A key issue in the understanding of the
safety concerns is the breadth of the human
stem cell field, with several cell types falling
under the umbrella term “stem cell”:

c Human embryonic stem cells (hESCs) are
pluripotent cells, first isolated fromhuman

embryos in 1998 by Thomson et al. [1].
c Human induced pluripotent stem cells
(hiPSCs) were first reported in 2006. So-

matic cells were reprogrammed using

the transcription factors Oct4, Sox2, Klf4,

and c-Myc (OSKM) to a pluripotent stem

cell state [2, 3].
c Adult stem cells (ASCs) cover several cell
types including mesenchymal and hema-

topoietic stem cells and tissue-specific

progenitors that reside in the humanbody

throughout an individual’s life. In compar-

isonwith pluripotent stem cells, they gen-

erally have a more limited expansion and

differentiation capacity [4, 5].
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Some adult stem cell-based therapies are clinically available,
such as bonemarrow or cord blood transplants containing hema-
topoietic stem cells [6, 7], skin grafts for burns [8], andmesenchy-
mal stem cells for graft-versus-host disease (GVHD) in children
(Canada and New Zealand) [9].

Additionally,more than 3,000 trials associatedwith stemcells
are currently collated in the World Health Organization Interna-
tional Clinical Trials Registry Platform. The majority of these are
adult stem cell-based therapies, likely attributable to the longer
established use of these cells.

The registry also includes the first pluripotent-based thera-
pies to be subjected to clinical trials; Table 1 highlights the narrow
scope of these hESC/hiPSC-derived therapeutics, with 8 of the 9
treatments associated with macular dystrophy or degeneration,
including the recently approved first human trial using hiPSCs
[10]. Use of the eye as a first application of these cells is ideal:
the graft size required is small, retinal pigment epithelial cells
are easily differentiated to high purity, and the grafts can be visu-
alized noninvasively, all contributing to a lower risk profile than
hESC/hiPSC grafts in less accessible organs [11, 12]. Other iPSC-
related trials listed on the registry are related to the generation
of genotype- or disease-specific iPSC lines for use as disease/
genotype models and stem cell banks, highlighting the broad ap-
peal of hiPSCs.

Despite thebasic technologybeing inplace toproduceawider
range of therapies, many aspects of the field, including safety,
remain incompletely understood, contributing to the cautious
translation from theoretical benefits to clinical application.

STEM CELL RISK FACTORS

Tumorigenic Potential

A major concern over the use of stem cell therapies is the per-
ceived risk of tumorigenicity. This is exemplified by the investiga-
tion of a tumor that developed four years after fetal neural stem
cell transplantation for ataxia telangiectasia [13]. Subsequent
analysis found that the tumor was derived from the transplanted
material. Similar cases have also been reported in the treatment
of spinal injury with olfactory mucosal cell transplantation; fol-
lowing presentation with back pain 8 years after the treatment,
the patient was found to have developed a mucosal-like mass
at the transplant location [14]. This study is particularly pertinent
given that the treatmentusedadult stemcells,whichareoftencon-
sidered to be less tumorigenic than fetal or pluripotent stem cells,
and the recent groundbreaking treatment of spinal injury with ol-
factory ensheathing cells [15]. In this study, the authors report no
adverse effects after 19 months; however, tumors from stem cell
grafts can arise many years after transplantation, highlighting
the need for extensive follow-up programs to reduce patient risk.

The capacity for undifferentiated pluripotent stem cells to
form teratomas in vivo is of particular concern [16]. Therefore,
these cells will be differentiated before transplantation. How-
ever, the risk remains that not all cells will be fully differentiated.
One study showed that despite functional liver engraftment,
hESC-derived hepatocyte-like cells transplanted into immuno-
compromisedmicedeveloped splenic and liver tumors containing
endodermal andmesodermal cell types [17]. Teratomashave also
been shown to be able to form from as little as 0.2% SSEA-1-
positive pluripotent cells, demonstrating that even at high levels
of purity, teratoma formation potential remains [18].

It is therefore vital to prevent undifferentiated cells passing
through to the differentiated cell population. Techniques to ad-
dress this problem include small molecules targeting stearoyl-
CoA desaturase-1, which selectively causes cell death in undiffer-
entiated iPSC/ESCs [19]. However, current analytical techniques
are not reliably sensitive enough to detect the removal of all plu-
ripotent cells [20]. Therefore, it is important to take other factors,
such as the disease and the number of cells transplanted, into ac-
count, because these factors will likely alter the chances of sub-
sequent teratoma formation [21]. Recent work has alleviated
someconcerns; a nonhumanprimatemodel for autologous trans-
plants showed that iPSC-derived mesodermal stromal-like cells
went on to form functional tissue, without teratoma formation
[22].

Human studies are the only true way to ascertain the tera-
toma risk in man. The first human studies were conducted by
Geron in 2009 [23], using hESC-derived oligodendrocyte progen-
itor cells for spinal injury treatment. The trials were halted for fi-
nancial reasons, but in the few patients treated, no tumors have
been reported [24]. Clinical trials investigating the use of hESC-
and iPSC-derived retinal pigmented epithelial cells in macular
degeneration are currently ongoing [11] and just starting [10],
respectively, with no tumor formation reported as yet. If success-
ful, these trials are likely to alleviate some of the concerns sur-
rounding tumorigenesis from pluripotent stem cells.

Pluripotent cells can be cultured indefinitely in vitro, making
scale-up relatively straightforward. However, during expansion
the cells are susceptible to chromosomal aberrations and karyo-
type abnormalities [25–32], potentially because of the artificial
conditions inwhich the cells are cultured, increasing the potential
for post-transplantmalignancy. Pioneeringwork has investigated
these aberrations, commonly found at chromosomes 1, 12, 17,
and 20, at higher resolution; however, it remains to be seen
whether the “culprit” genes can be identified for screening
[26–28, 30–36]. It is clear that smaller genomic changes also oc-
cur, often at a level not readily detected by standard G-banding
[26]; the significance of these changes to safety is unclear. Much
work has been focused on the removal of pluripotent stem cells
from the transplanted material; however, techniques that allow
for the removal for genotypically compromised cells would be of
equal benefit to the therapeutic safety profile [37]. Karyotypical
changes are not limited to pluripotent cells, with ASCs also
thought to develop abnormalities during in vitro culture [34];
however, these findings have been debated, as demonstrated
by the correspondence between Sensebé et al. [38] and Ben-
David et al. [39].

iPSCs have additional safety concerns. The development of
nonintegrative reprogramming techniques using direct transfec-
tion of proteins or mRNAs, Sendai viruses, or episomal plasmids
has reduced concerns regarding incomplete promoter silencing
and genomic disruptions of traditional techniques [40–43]. Some
have also replaced the potentially oncogenic OSKM reprogram-
ming factorswith Sall4,Nanog, Esrrb, and Lin28 [44]; these factors
are thought to be less efficient but derive higher quality iPSCs
with reduced aberrations in histone variant 2A.X, which has
been shown tobea key determinant of iPSC/ESCquality and devel-
opmental potential [45]. Others have used microRNAs and small
molecules to reprogramsomatic cells [46, 47];however, at the time
of writing, these reports are yet to be replicated.

Additional studies investigating the genomic integrity of iPSCs
have shown that DNA damage sustained during reprogramming
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may not be fully repaired in the resulting cells [48]. Furthermore,
reprogramming cord blood cells reduced the number of DNA
mutations when compared with dermal fibroblasts [49], suggest-
ing that reprogramming from neonatal or more stem-like cells
may be theoretically safer, albeit more challenging to obtain.

Immunogenic Potential

Maintaining functional immunologic tolerance of stem cells and
their derivatives is crucial. Rejection is considered to be due to
amismatch in expression of human leukocyte antigens (HLA), mi-
nor histocompatibility complex (mHC) antigens, and ABO blood
group antigens following allogeneic transplant (supplemental
online Fig. 2). Generally, allogeneic matching for both HLA and
mHC is not feasible because of extensive polymorphisms.

UndifferentiatedASC immunogenicity studies areparticularly
important, because, unlike pluripotent cells, they can be admin-
istered without differentiation. Mesenchymal stem cells (MSCs)
have a unique capacity amongst ASCs to modulate the immune
response through a HLA-independent [50] dampening of inflam-
matory cytokine release [51–53]. Additional low HLA-I and no ex-
tracellular HLA-II [51] alongside little or no expression of B- and
T-cell costimulatory molecules [54, 55] onMSCs suggest a poten-
tial to both modulate and avoid immune surveillance.

Other ASCs, such as hematopoietic stem cells (HSCs), have
also demonstrated some immune avoidance capabilities [56,
57], but allogeneic transplants are still susceptible to rejection
[58]. Moreover, the vast experience with the use of allogeneic
HSC transplants for the treatment of haematological malignan-
cies and other conditions has shown the potential for GVHD as
a result of allogeneic T-cell infiltration from the graft. This repre-
sents a major risk factor and cause of patient morbidity andmor-
tality, with ∼15% of allogeneic HSC transplants resulting in
fatalities [59]. This is a large and important topic that is well-
reviewed by Blazar et al. [60]. Interestingly,MSCs have been used
for the treatment of GVHD (Prochymal) [9, 61, 62]. This has led
some to suggest that MSCs could be used as part of the stem cell

transplant to reduce the potential for both GVHD and graft rejec-
tion [63].

Because of tumorigenic risk, clinical administration of plurip-
otent stem cells is likely to be in the form of a differentiated pop-
ulation; thus any immunogenic assessment should focus on the
differentiated product [64]. It is generally accepted that there
is little to no rejection in autologous cells, even following in vitro
culture. Therefore, research has focused on developing stem
cells, which are genetically identical to the recipient. Recently, so-
matic cell nuclear transfer was achieved in humans, allowing for
the isolation of hESCs expressing the donor genotype [65, 66].

iPSC-based therapy remains the most promising technique
for realizing pluripotent autologous therapy. Although initial
reports suggested immunogenicity in syngeneic transplants
[67], two subsequent studies found no evidence of acute or
chronic immunogenicity toward differentiated iPSCs (both spon-
taneous and directed) [68, 69]. Further, de Almeida et al. [70]
reported that, in contrast to rejected iPSCs, syngeneic iPSC-
derived endothelial cells were accepted in mice, demonstrating
a comparable tolerogenic response to syngeneic primary endo-
thelial cells. Direct comparison of autologous and allogeneic
transplanted iPSC-derived neurons in nonhuman primates also
revealed minimal immune response in autologous transplants,
whereas allogeneic transplants were immunogenic [71]. There-
fore, current evidence points toward immunological tolerance
of autologous terminally differentiated transplanted stem cells.

The time scale and costs associated with personalized thera-
pies may mean that they are used as an alternative option when
HLA matching cannot be achieved from stem cell banks contain-
ing carefully selected donor cell lines [72–74]. A second consider-
ation is for disorders in which their etiology is genetically linked
and whether patient-derived transplanted material containing
the diseased genotype would have therapeutic efficacy; autolo-
gous cells in such cases may require gene therapy.

One method of dealing with the immune response to cell
grafts is encapsulation [75, 76]. Encapsulation reduces interaction
with immune cells and consequently reduces the risk of rejection

Table 1. Pluripotent stem cells clinical trials (phases I–III) listed in the International Clinical Trial Registry Platform by the World Health
Organization

ICTRP Trial Disease Cell type
Trail
stage Country Financial support

Registration date
(month/day/year)

NCT02122159 Myopic macular
degeneration

hESC-derived retinal
pigmented epithelial cells

I/II USA University of California,
Los Angeles

4/1/2014

JPRN-UMIN000011929 Exudative age-related
macular degeneration

hiPSC-derived retinal
pigmented epithelial cells

I Japan RIKEN 10/2/2013

NCT02057900 Ischemic heart disease hESC-derived CD15+ Isl-1+
progenitors

I France Assistance Publique-
Hôpitaux de Paris

9/17/2013

NCT01691261 Acute wet age-related
macular degeneration

hESC-derived retinal
pigmented epithelial cells

I USA/U.K. Pfizer 9/19/2012

NCT01674829 Advanced dry age-related
macular degeneration

hESC-derived retinal
pigmented epithelial cells

I/II South Korea CHA Bio & Diostech 8/22/2012

NCT01625559 Stargardt’s macular
dystrophy

hESC-derived retinal
pigmented epithelial cells

I South Korea CHA Bio & Diostech 6/18/2012

NCT01469832 Stargardt’s macular
dystrophy

hESC-derived retinal
pigmented epithelial cells

I/II U.K. Advanced Cell Technology 11/08/2011

NCT01344993 Advanced dry age-related
macular degeneration

hESC-derived retinal
pigmented epithelial cells

I/II USA Advanced Cell Technology 4/28/2011

NCT01345006 Stargardt’s macular
dystrophy

hESC-derived retinal
pigmented epithelial cells

I/II USA Advanced Cell Technology 4/28/2011

Abbreviations: hESC, human embryonic stem cell; ICTRP, International Clinical Trial Registry Platform.
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whilemaintaining efficacy through themovement of factors (e.g.,
cytokines) across a semipermeable membrane. Furthermore, en-
capsulation may also prevent tumors from reaching tissues out-
side the capsule. Such techniques are currently being developed
for use in diseases such as diabetes andmay represent an elegant
solution to a complex problem [77–80]. Notwithstanding the
clear potential, the development of such a system is not trivial,
and despite sustained efforts and sequential developments, the
translation to a clinically effective technology has yet to be
achieved [81].

Another immunological consideration is the culture and
manufacturing conditions. For example, fetal bovine serum and
sialic acid derivative Neu5G from mouse feeder layers have both
been shown to alter the immunogenicity of stem cells [82, 83].
Therefore, certified animal component-free products should be
used wherever possible.

Biodistribution

Biodistribution encompasses the risks associated with the migra-
tion, distribution, engraftment, and long-term survival of the
transplanted material. Different routes of administration result
in differential dissemination patterns and risks. Systemic admin-
istration can lead to cells becoming entrapped in the lung or mi-
crovasculature, causing dangerous side effects, such as the
pulmonaryemboli reported following intravenous administration
of adipose tissue-derived stem cells [84]. Administration in a feed-
ing artery of the target tissue has been proposed to reduce these
risks [85]; however, the risk ofmicrovascular occlusions remain. Di-
rect transplant to the targeted organ/area may reduce these risks
[86, 87]; however, this is likely to be location-dependent and may
require invasive surgery, for example, in the liver. Therefore, the
chosen method must consider the target pathology, therapeutic
objectives, and the patient risk-benefit profile [88, 89].

Once administered, up to 90% of transplanted cells are lost
because of physical stress, inflammation, hypoxia, anoikis, or im-
munogenic rejection [20, 90]. To achieve therapeutic efficacy,
large numbers of cells may therefore be required, increasing
the risk of teratoma formation [21] or ectopic engraftment. Thus,
the minimum number of cells required for effective treatment
should be ascertained as part of product development.

A recent study of neural stem cells in a model of spinal cord
injury reported ectopic cell growth 9–10weeks post-transplant at
various points along the spinal cord and brainstem [91]. The cells
responsible for the ectopic growth were hypothesized to have
travelled via the cerebral spinal fluid, colonized, and further pro-
liferated, highlighting the need to understand the biodistributary
properties of the treatment before clinical application.

The half-life of the transplanted material is another factor
that can alter the level of risk. If the half-life is short, the risk as-
sociated with the transplanted material is reduced accordingly.
However, if therapeutic efficacy is limited to the short-to-
medium term, chronic diseasesmay require repeated administra-
tion and thus an understanding of the likely dosing regimen is an-
other key consideration for risk assessment.

REGULATION OF STEM CELL THERAPEUTICS

One of the major limitations of stem cell therapeutics is the
heterogeneous character and limited experience of their

development. Consequently, no specific European (European
Medicines Agency [EMA]) or U.K. (Medicines and Healthcare
Products Regulatory Agency, [MHRA]) regulatory guidance
addresses technical aspects of the drug development program
in detail, for example, the type, size, and duration of nonclin-
ical studies [92].

Regulators have attempted to address these problems by
drafting guidelines and reflection papers. The Guideline on Hu-
man Cell-Based Medicinal Products (EMEA/CHMP/410869/
2006) was adopted in 2008, before the unifying regulation on ad-
vanced therapy and medicinal products came into force [93] and
gives a generic overview of the requirements for the licensing of
cell-based medicinal products; however, the information pro-
vided is not very detailed. A subsequent reflection paper on stem
cell-based medicinal products (CAT/571134/09) was adopted in
2011, focusing more specifically on stem cell-based medicinal
products and also discussing the experiences gained with cell-
basedproducts, including a summaryof the challenges associated
with biodistribution and immunogenicity studies. However, be-
cause no detailed requirements are defined, the applicant is still
required to implement an appropriate development program
that addresses the product-specific risks.

It is highly advisable to engage in discussions with the regula-
tory bodies early in the development of the product. Most regu-
latory agencies develop structures to facilitate the interaction
with developers (e.g., the MHRA innovation office and the EMA
innovation task force) and may provide scientific advice to assist
product development.

For the development of advanced therapy medicinal prod-
ucts, a risk-based approach can be used as amatrix to decide that
nonclinical data are needed. The (optional) risk-based approach
encompasses intrinsic (cell-related) and extrinsic (manufacture-
related) risks associated with the medicinal product and the sub-
sequent development and implementation of the appropriate
assays to assess these risks.

Further helpwith risk assessment is available in the Guideline
on the Risk-Based Approach According to Annex I, Part IV of Di-
rective2001/83/ECApplied toAdvancedTherapyMedicinal Prod-
ucts (EMA/CAT/CPWP/686637/2011). This document provides
examples illustrating the risk-based approach. Likewise, (non-
binding) guidance documents are also provided by the Food
and Drug Administration (FDA) in the USA [94].

As a regulatory prerequisite, good manufacturing practice
must also be followed, aswell as the use of clinical grade stem cell
products and procedures, free of microbiological and nonmicro-
biological contaminants. Similar practices should be applied to
preclinical research to allow predictable translation of therapies
to the clinic.

The importance of regulation is highlighted by the report on
the unregulated use of fetal brain-derived olfactory ensheathing
cells for the treatment for spinal cord injuries. The authors found
little to no benefit from the treatment, but complications includ-
ing meningitis and death [95]. Although this is an extreme exam-
ple, many unregulated stem cell treatments are now available
across the world (well-reviewed by Zarzeczny et al. [96]). In
2011, Celltex began offering ASC-based therapies in Texas with-
out FDA approval, igniting debate about the regulation of stem
cell therapeutics [97]. Subsequently, the FDA won a recent court
battle to regulate proliferated stem cells as biological drugs, and
documents encapsulating these new regulatory powers are in
preparation [98, 99].
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PRECLINICAL AND CLINICAL ASSESSMENT

Tumorigenic and Immunogenic Preclinical and
Clinical Trials/Assays

In terms of both tumor- and immunogenicity, risk cannot be re-
liably assessedwhen themodel is not predictive, so it is important
tomatch the targeted disease phenotype to the animal or in vitro
assay. Traditional medicinal product development routes may be
appropriate (i.e., going from simple to complex, in vitro to in vivo,
and animal to human). However, some therapies may require
multimodel studies to provide the fullest understanding of both
efficacy and safety, whereas other therapies may not require an
animal model because there may be little relevance. Future pre-
clinical assessmentsmay also use iPSC-derived cells as a source of
a diseased phenotype as the most clinically relevant model of
therapeutic safety and efficacy.

Assays for the Assessment of Tumorigenic Potential

The tumorigenic potential of cell-based therapies needs to be
assessed throughout product development. In vitro techniques,
such as karyotyping, can be used to assess genomic integrity.
More in-depth investigation may be required to detect smaller
changes; however, without known associated changes, attribut-
ing risk is difficult. Quantitative polymerase chain reaction
(Q-PCR) and flow cytometry can be used to determine the purity
of the differentiated population, and soft agar colony formation
assaysmay also beused to assess the tumorigenic potential of the
cell population [100]. However, all these indirect methods do not
guarantee absence of tumors in the clinical setting.

Immune-deficient rodent models may be used to assess the
direct tumorigenic potential of the transplantedmaterial,with tu-
morigenic growth reported from as few as two undifferentiated
ESCs [101]. Initial investigationsmay take place in an easily acces-
sible and observable locationwith cell number determined by the
planned assessmentmethod. Once initial investigations are com-
plete, tumorigenicity in the clinically relevant microenvironment
should then be assessed with cell numbers equivalent to and
higher than the predicted clinical dose. Deep tissue assessment
by Q-PCR or histopathological analysis is usually required to con-
firmectopic tumor formation [102, 103], but future investigations
may use improvements in real-time cell tracking for greater infor-
mation with regard to tumor location/development. Currently
available imaging techniques suitable for clinical tumorigenic
analysis include magnetic resonance imaging (MRI) for tumors
.0.3 cm and fludeoxyglucose (18F) ([18F]FDG)-positron emission
tomography (PET) for tumors .1 cm, with bioluminescent and
photoacoustic imaging currently limited to preclinical studies
[104, 105]. The useof biomarkers in clinical trialsmay alsoprovide
useful information, with raised blood a-fetoprotein levels found
in many teratomas [106]. Commonly used techniques for assess-
ing tumorigenic potential in vitro andafter clinical transplantation
are presented in Table 2.

Immune-deficient models lack the immune response to tu-
mor formation. Previous reports have demonstrated a reduced
capacity for tumor formation in immune-competent models
when comparedwith immune-deficient models [70, 101]. Conse-
quently, a tumor that forms in an immune-deficient model may
not always form in an immune-competent model or in clinical
studies.

Preclinical nonxenogeneic studies using animal transplant
models, as shown by Hong et al. [22] (e.g., transplanting

equivalent mouse iPSC-derived cells into genetically identical/
nonidenticalmice) used in combinationwith invitroassaysbefore
the development of human equivalents may therefore be the
most relevant method of assessing tumorigenicity.

Assays for the Assessment of Immunogenic Potential

Developing relevant immunogenicity assays remains challenging.
Immune-competent and immune-deficient in vivo models lack
immunogenic clinical relevance for human cells in most situations;
however, in some cases they can provide useful information:

c Immune-competentmodelsmay be used to investigate the use
of stem cells in immune-privileged locations, such as the eye
[12] or as a model of allogeneic transplants.

c Immune-deficient animals varying in the extent of immune de-
pletion (i.e., loss of specific immune cell types)may be useful in
investigating specific mechanisms of rejection [107].

c Humanized models, such as the trimera mouse, have human
immune cells, improving relevance [108], especially for exam-
ining allogeneic grafts.

Recognizing that xenotransplation cannot capture the human
alloimmune response [109], in vitro assays such as mixed lym-
phocyte reactions may be more informative of graft immunoge-
nicity. Moreover, using the equivalent therapy in a species
suitable for modelling immunogenicity, such as the nonhuman
primate iPSC-derived transplant models reported by Morizane
et al. [71],may provide themost informative results, if technically
and financially viable.

Biodistribution in Preclinical and Clinical Trial/Assays

Biodistribution assays inform both safety and efficacy evalua-
tions. Although histopathology and PCR remain the gold standard
for assessing deep tissues, here we focus on cell labeling because
of its ability to monitor cell distribution/migration in real time
[110]. Such techniques are important for ascertaining the
migratory/distribution patterns and are also informative in a tu-
morigenic (ectopic tumor formation) and immune (loss of cells
through immune rejection) context.

Cellular imaging strategies are composedof the imaging tech-
nique and the labeling agent (supplemental online Fig. 3). The im-
aging technique is usually chosen in conjunctionwith the labeling
agent, which can be classified in two main categories: direct and
indirect labeling [111], summarized in Table 3.

Direct Labeling

Direct labeling requires the introduction of the labeling agents in-
to the cells before transplantation. The relative intensity of the
detected signal from the introduced molecules is then used as
a surrogate for cell number.

Radionuclides used for cell imaging have different half-lives,
which therefore determines the length of time cells can be moni-
tored noninvasively [110]. Single photon emission computed to-
mography (SPECT) and/or PET are the most commonly used
methods for detecting radionuclides (Table 3). Studies have shown
as little as 6.23 103 to 2.53 104 cells can be detected using these
methods [112]. However, short radionuclide half-lives mean that
cell-tracking is limited to hours rather than weeks. Indium-111
oxine has a relatively long half-life (∼2.8 days) [112] and has been
shown to successfully track MSCs in preclinical models for up to 7

Heslop, Hammond, Santeramo et al. 393

www.StemCellsTM.com ©AlphaMed Press 2015

 by Janko M
rkovacki on A

pril 3, 2015
http://stem

cellstm
.alpham

edpress.org/
D

ow
nloaded from

 

http://stemcellstm.alphamedpress.org/lookup/suppl/doi:10.5966/sctm.2014-0110/-/DC1
http://stemcellstm.alphamedpress.org/


Table 2. Available assays to assess the tumorigenic risk of stem cell therapeutics, describing the main uses of each technique along with
advantages and disadvantages

Assay Intended use Advantages Disadvantages

Karyotyping (G-banding
and/or spectral) [26, 28]

Assess genetic integrity Unbiased genome coverage Low genome resolution

Can detect balanced
translocations and inversions

Low throughput

Cell-level resolution

Comparative genomic
hybridization arrays [27, 29,
30, 32]

Assess genetic integrity High genome resolution Does not detect changes in ploidy

Can probe specific zones Unable to detect balanced
translocations and inversions

Population level resolution

Comparative large-scale
expression analysis
(e-karyotyping) [31, 34, 159]

Assess genetic integrity High genome resolution Indirect test for genetic integrity

Assess cell differentiation Can probe specific zones Does not detect changes in ploidy

Expression profile and genetic
integrity test at the same time

Unable to detect balanced
translocations and inversions

Population level resolution

Single-nucleotide polymorphism
analysis [26, 29, 32]

Assess genetic integrity High genome resolution Does not detect changes in ploidy

Can probe specific zones Unable to detect balanced
translocations and inversions

Population level resolution

Soft agar colony formation
assay [100]

Assess colony formation in
anchorage independent
conditions

Well-established Not suitable for pluripotent cells
that require “clump passage”

Relatively inexpensive
Time consuming

High limit of detection

Standard histology and cell
microscopy [107, 160]

Assess cell differentiation Cell-level resolution Significant experience required

Can detect incomplete and
immature phenotypes or
transformation

Invasiveness for in vivo and clinical use

Cannot discriminate between host
and graft

Low throughput

Standard molecular biology
expression tools (northern and
western blotting, ELISA,
two-dimensional protein gels,
PCR-related techniques)
[28, 35, 161]

Assess cell behavior and
differentiation

Can detect incomplete and
immature phenotypes or
transformation

Invasiveness for in vivo and clinical use

Can discriminate between host
and graft (depending on
technique and application)

Population level resolution

In situ hybridization and
immunolabeling of endogenous
transcripts/antigens (including
bioluminescence and cell sorting
techniques) [33, 162, 163]

Assess cell behavior and
differentiation

Cell level resolution Invasiveness for in vivo and clinical use

Cell preparation purification
Combines histology and gene
expression

Low throughput

Can detect incomplete or
immature phenotypes

Can discriminate between host
and graft (with adequate probe
or antibody)

Mass spectrometry proteomics
[164, 165]

Assess cell behavior and
differentiation

High throughput Significant experience required

Unbiased proteome coverage Sensitivity can be an issue for low
abundance proteins

Can detect incomplete or
immature phenotypes Invasiveness for in vivo and clinical use

Can discriminate between host
and graft (with labeling)

Standard toxicology studies [166] Assess toxicity and tumor
formation potential in animals
and humans

Well-established Requires combined use of other
techniques (i.e., histology, profiling, etc.)

Allows basic metabolic profiling
of the host

Three-dimensional imaging
techniques (MRI, CT, PET scans)
[166, 167]

Assess tumor formation in animals
and humans

Noninvasive Only morphological data (MRI and CT)

Assess status of graft/device
Good spatial data Use of x-rays (CT) and/or radioactive

reagents (PET)

Assess host status
Radioactive labeling (PET) can
detect specific targets Requires expensive infrastructure

Photoacoustic imaging [135, 136] Assess tumor formation in animals
and humans

Noninvasive Low skin penetration

Bioluminescence imaging [168] Assess tumor formation in animals Noninvasive Low skin penetration

Abbreviations: CT, computed tomography; ELISA, enzyme-linked immunosorbent assay; MRI, magnetic resonance imaging; PCR, polymerase chain
reaction; PET, positron emission tomography.
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days [113]; however, signal leakage and alteration of cell pheno-
type limits translatability [114]. Clinically, hematopoietic stemcells
labeled with [18F]FDG for acute and chronic myocardial infarc-
tion treatmentwere successfully trackedbyPETafter 20hours [115].

The use of iron oxide labeling for MRI makes it possible to
trace the cells over longer periods of time [116]. Themost common
labeling agent in preclinical/clinical trials is superparamagnetic iron
oxide particles (SPIO), which offers the highest sensitivity and has
been used to track neural stem cells in a patient for up to 3 weeks
[117]. Generally, MRI has lower sensitivity than SPECT/PET. The
number of cells used for SPIO tracking in humans ranges from
3.713 105 to 17.43 106 cells [118], whereas de Vries et al. [119]
were able to detect 1.53 105 dendritic cells in melanoma patients.

Alternatively, Perfluorcarbons (PFC) and Fluorine-19 (19 F)
MRI can be used to track cells [120]. Cells are labeled with PFC
emulsions before transplantation and subsequently detected as
hotspots by 19 F MRI. The main advantage of this system is the
low signal-to-noise ratio, caused by the lowendogenous 19 F con-
centration, allowing for the quantification of cells at an estimated
minimum sensitivity of 104 to 105 cells per voxel [120]. This sys-
tem has been successfully exploited to monitor stem cell thera-
pies [121–123] and is promising for clinical applications with
some PFCs approved by the FDA [124]. This system has been ap-
plied clinically in dendritic cells, with a reported minimum sensi-
tivity of 13 105 cells per voxel [125].

Indirect Labeling

Indirect labeling is the introduction of a reporter gene recognized
by a corresponding probe or imaging system [20]. This system is
highly controllable because only viable cells are able to transcribe
the reporter gene [126].

In MRI-based gene reporter systems, the transduced gene is
typically an intracellular metalloprotein (e.g., transferrin, ferritin,
tyrosinase) which traps large quantities of iron in the cytoplasm
for noninvasive detection [110, 126]. However, the trapped iron
produces long-term background, which masks the viability of the
cell [112]. Some have therefore suggested that the only trans-
duced gene currently suitable for MRI cell tracking is lysine-rich
protein [127]. In the SPECT and PET reporter gene imaging sys-
tems, a gene reporter (enzyme or receptor) requires an exoge-
nously administered probe (tracer) to localize and quantify the
stem cell product.

Anumberofgroups successfullymonitoredESCs [128]andMSCs
[129, 130] in animal models, using gene reporter systems. These
studies reported a reliable correlation in terms of localization, mag-
nitude, and duration of the cells in vivo when compared with con-
ventional methods (immunohistochemistry and PCR). The short
half-lifeoftheprobesallowsadefinedcontinuousimagingperiod
of nomore than a fewhours [128]. However, being noninvasive,
monitoring of the stem cells at regular intervals was possible for
up to 4 weeks [128–130]. Quantitative information can be ex-
trapolated from the percentage of injected radioisotope/gram
of tissue, allowing for the quantification of the area(s) covered
by the cells, but not the exact cell number [129].

The use of indirect labeling is rare in a clinical setting because
genetic manipulation is required [131]. However, the FDA has ap-
proved the PET reporter probe 9-[4-[18F]fluoro-3-(hydroxymethyl)
butyl]guanine ([18F]FHBG; IND #61,880) [132] for the treatment
of glioblastoma multiforme. Successful tracking of T cells was
reported with no significant adverse effects [133]. Guidelines

on how to administer and safely monitor [18F]FHBG in humans
have been made available [134].

Optical imaging techniques are limited by exponential signal
loss as depth increases, caused by scattering phenomena that oc-
cur when photons pass through tissue [110, 126]. Photoa-
coustic tomography overcomes this problem. A short laser
pulse irradiates the target tissue, causing a partial absorption
of the pulse energy and conversion into heat. This increases lo-
cal pressure through thermoelastic waves and is subsequently
detected by ultrasonic transducers placed outside the tissue.
The image is generated by collecting all thermoelastic waves
from the arrival time [135, 136]. Such technology has been used
to track human MSCs labeled with gold nanocages in a rodent
model for 7 days [104].

Other RisksAssociatedWith the Translation to the Clinic

Despite highly controlled conditions in both cell preparations and
clinical settings, infections remain a risk for patients who have re-
ceived allogeneic stem cell transplants that require immune-
suppression therapy [137]. Moreover, long-term immunosup-
pression has well-documented side effects, including end-organ
toxicity and increased risk of cancers [138].

Viral status must also be assessed in donors of allogeneic
grafts.DonorsofHSCsare routinely screened forhepatitis viruses,
human immunodeficiency virus, cytomegalovirus, and (bacterial)
syphilis [139, 140]. Further screening for herpes simplex virus,
Epstein-Barr virus, and adenoviruses may also be required in ad-
dition to screening for cell type- and location-specific viruses
[140].Genotype screening for donor cells has alsobeen suggested
[141], with some reports of specific genetic polymorphisms asso-
ciated with differential GVHD severity and outcome in allogeneic
HSC transplants [142, 143].

Scaffolds aiding engraftment or delivery of cells should also
be considered for immunological potential. Such devices have
been used to improve the survival ofMSCs in brain injurymodels
[144, 145], and some groups are attempting to use decellular-
ized organs [146] as three-dimensional scaffolds for stem
cell-derived repopulation [147–149]. Biological scaffolds offer
greater similarity to the host extracellular matrix than those of
synthetic origin, improving engraftment; however, they are
usually xenogeneic/allogeneic [150] and thus have immunogenic
potential. Various techniques have been used to remove anti-
genic epitopes, DNA, and damage-associated molecular pattern
signals [151–154]; however, immunogenic potential remains. A
comparative study of five commercially available biological scaf-
folds demonstrated significantly elevated immune responses, in-
cluding chronic inflammation and fibrosis, versus an autologous
control [155].

Scaffolds derived from synthetic origin are generally consid-
ered to be less immunogenic. Several synthetic biodegradable pol-
ymers have been approved by the FDA for medical applications
[156–158] and consequently may be used without further safety
assessment. However, novel materials/uses are required to un-
dergo safety testing in compliancewith the ISO10993 International
Standard (ISO 10993: Biological evaluation of medical devices).

CONCLUSION

Stem cell therapies have immense potential to alleviate, or
even cure, a range of acute, chronic, and debilitating diseases.
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However, wemust ensure that these therapies are safe as well as
effective, and a lot of work still remains to be done to understand
and reduce any risk associated with their use.

Huge improvements in our in vitro techniques are needed,
such as ensuring gene aberration-free expansion and improved
differentiation purity, alongside the better identification of risk
factors that can be routinely screened before transplantation.
Furthermore, the development of models that can better predict
immunological responses and cell tracking techniques with in-
creased duration and depth capabilities would represent great
improvements to the current status quo.

However, the top priority is that this work must remain fo-
cused on the clinical outcome. Themost important consideration
is the risk-benefit assessment for thepatient. Although a stemcell
therapy, likemany drugs,may not be perfectly safe, the benefit to
the patient may far outweigh the potential risks. Therefore, each
treatment shouldbedeterminedona case-by-casebasiswith reg-
ulatory input, ensuring that the risk of the therapy is appropriate
for the given condition and patient.
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et al. Long-term problems related to immuno-
suppression. Transpl Immunol 2006;17:31–35.
139 Centers for Disease Control and Preven-

tion. Guidelines for preventing opportunistic
infections among hematopoietic stem cell trans-
plantrecipients. Recommendations andReports:
Morbidity andMortalityWeekly Report, Vol. 49.
Washington, D.C.: U.S. Department of Health
and Human Services, Public Health Service, Cen-
ters for Disease Control, Epidemiology Program,
2001.
140 Hurley CK, Raffoux C.WorldMarrow Do-

norAssociation: International standards for unre-
lated hematopoietic stem cell donor registries.
Bone Marrow Transplant 2004;34:103–110.
141 Kallianpur AR. Genomic screening and

complications of hematopoietic stem cell trans-
plantation: Has the time come? Bone Marrow
Transplant 2005;35:1–16.
142 Berro M, Mayor NP, Maldonado-Torres

H et al. Association of functional polymorphisms
of the transforming growth factor B1 gene with
survival and graft-versus-host disease after unre-
lateddonorhematopoietic stemcell transplanta-
tion. Haematologica 2010;95:276–283.
143 Viel DO, Tsuneto LT, Sossai CR et al. IL2

and TNFA gene polymorphisms and the risk of
graft-versus-host disease after allogeneic hae-
matopoietic stem cell transplantation. Scand J
Immunol 2007;66:703–710.
144 Tate CC, Shear DA, Tate MC et al. Lam-

inin and fibronectin scaffolds enhance neural

stem cell transplantation into the injured brain.
J Tissue Eng Regen Med 2009;3:208–217.
145 Guan J, Zhu Z, Zhao RC et al. Transplan-

tation of human mesenchymal stem cells
loaded on collagen scaffolds for the treatment
of traumatic brain injury in rats. Biomaterials
2013;34:5937–5946.
146 Guyette JP, Gilpin SE, Charest JM et al.

Perfusion decellularization of whole organs.
Nat Protoc 2014;9:1451–1468.
147 Zhou Q, Li L, Li J. Stem cells with decel-

lularized liver scaffolds in liver regeneration and
their potential clinical applications. Liver Int
2014;35:687–694.
148 Sabetkish S, Kajbafzadeh AM, Sabetkish

N et al. Whole-organ tissue engineering: Decel-
lularization and recellularization of three-di-
mensional matrix liver scaffolds. J Biomed
Mater Res A 2014 (in press).
149 Bonandrini B, Figliuzzi M, Papadimou E

et al. Recellularization of well-preserved acellu-
lar kidney scaffold using embryonic stem cells.
Tissue Eng Part A 2014;20:1486–1498.
150 Badylak SF, Freytes DO, Gilbert TW.

Extracellular matrix as a biological scaffold
material: Structure and function. Acta Bio-
mater 2009;5:1–13.
151 Fishman JM, Lowdell MW, Urbani L

et al. Immunomodulatory effect of a decellular-
ized skeletal muscle scaffold in a discordant
xenotransplantation model. Proc Natl Acad Sci
USA 2013;110:14360–14365.
152 Crapo PM, Gilbert TW, Badylak SF. An

overview of tissue and whole organ decellulari-
zationprocesses.Biomaterials2011;32:3233–3243.
153 Song JJ, Ott HC. Organ engineering

basedondecellularizedmatrix scaffolds. Trends
Mol Med 2011;17:424–432.
154 Daly KA, Liu S, Agrawal V et al. Damage

associated molecular patterns within xenoge-
neic biologic scaffolds and their effects on host
remodeling. Biomaterials 2012;33:91–101.
155 Valentin JE, Badylak JS,McCabe GP et al.

Extracellular matrix bioscaffolds for orthopaedic
applications. A comparative histologic study. J
Bone Joint Surg Am 2006;88:2673–2686.
156 Gunatillake PA, Adhikari R. Biodegrad-

able synthetic polymers for tissue engineering.
Eur Cell Mater 2003;5:1–16; discussion 16.
157 Willerth SM, Sakiyama-Elbert SE. Com-

bining stem cells and biomaterial scaffolds for
constructing tissues and cell delivery. Cam-
bridge, MA: StemBook, 2008.
158 Demirbag B, Huri PY, Kose GT et al. Ad-

vanced cell therapies with and without scaf-
folds. Biotechnol J 2011;6:1437–1453.
159 Ben-David U, Mayshar Y, Benvenisty N.

Virtual karyotyping of pluripotent stem cells on
the basis of their global gene expression pro-
files. Nat Protoc 2013;8:989–997.
160 Hay DC, Pernagallo S, Diaz-Mochon JJ

et al. Unbiased screening of polymer libraries
to define novel substrates for functional hepa-
tocytes with inducible drug metabolism. Stem
Cell Res (Amst) 2011;6:92–102.
161 Desmarais JA, HoffmannMJ, BinghamG

et al. Human embryonic stem cells fail to

activate CHK1 and commit to apoptosis in re-
sponse to DNA replication stress. STEM CELLS
2012;30:1385–1393.
162 Tang C, Lee AS, Volkmer JP et al. An anti-

bodyagainst SSEA-5 glycanonhumanpluripotent
stem cells enables removal of teratoma-forming
cells. Nat Biotechnol 2011;29:829–834.
163 Ben-David U, Nudel N, Benvenisty N.

Immunologic and chemical targeting of the
tight-junction protein Claudin-6 eliminates tu-
morigenic human pluripotent stem cells. Nat
Commun 2013;4:1992.
164 Benevento M, Munoz J. Role of mass

spectrometry-based proteomics in the study
of cellular reprogramming and induced pluripo-
tent stem cells. Expert Rev Proteomics 2012;9:
379–399.
165 Reiland S, Salekdeh GH, Krijgsveld J. De-

fining pluripotent stem cells through quantita-
tive proteomic analysis. Expert Rev Proteomics
2011;8:29–42.
166 Sinden JD,Muir KW. Stemcells in stroke

treatment: The promise and the challenges.
Int J Stroke 2012;7:426–434.
167 James ML, Gambhir SS. A molecular

imaging primer: Modalities, imaging agents,
and applications. Physiol Rev 2012;92:
897–965.
168 de Almeida PE, van Rappard JR, Wu JC.

In vivo bioluminescence for tracking cell fate
and function. Am J Physiol Heart Circ Physiol
2011;301:H663–H671.
169 Welling MM, Duijvestein M, Signore A

et al. In vivo biodistribution of stem cells using
molecular nuclear medicine imaging. J Cell
Physiol 2011;226:1444–1452.
170 Cromer Berman SM, Walczak P, Bulte

JW. Tracking stem cells using magnetic nano-
particles.Wiley InterdiscipRevNanomedNano-
biotechnol 2011;3:343–355.
171 Rosen AB, Kelly DJ, Schuldt AJT et al.

Finding fluorescent needles in the cardiac hay-
stack: Tracking humanmesenchymal stem cells
labeled with quantum dots for quantitative in
vivo three-dimensional fluorescence analysis.
STEM CELLS 2007;25:2128–2138.
172 Lin S, Xie X, PatelMRet al. Quantumdot

imaging for embryonic stemcells. BMCBiotech-
nol 2007;7:67.
173 Eisenblätter M, Ehrchen J, Varga G

et al. In vivo optical imaging of cellular inflam-
matory response in granuloma formation us-
ing fluorescence-labeled macrophages. J Nucl
Med 2009;50:1676–1682.
174 Zinn KR, Chaudhuri TR, Szafran AA et al.

Noninvasive bioluminescence imaging in small
animals. ILAR J 2008;49:103–115.
175 Eghtedari M, Oraevsky A, Copland JA

et al. High sensitivity of in vivo detection of gold
nanorods using a laser optoacoustic imaging
system. Nano Lett 2007;7:1914–1918.
176 Chamberland DL, Agarwal A, Kotov N

et al. Photoacoustic tomography of joints
aided by an Etanercept-conjugated gold
nanoparticle contrast agent: An ex vivo pre-
liminary rat study. Nanotechnology 2008;19:
095101.

See www.StemCellsTM.com for supporting information available online.

400 Safety of Stem Cell Therapeutics

©AlphaMed Press 2015 STEM CELLS TRANSLATIONAL MEDICINE

 by Janko M
rkovacki on A

pril 3, 2015
http://stem

cellstm
.alpham

edpress.org/
D

ow
nloaded from

 

www.StemCellsTM.com
http://stemcellstm.alphamedpress.org/


Subspecialty Collections

 ed-therapies
http://stemcellstm.alphamedpress.org//cgi/collection/standards-policies-protocols-and-regulations-for-cell-bas
Standards, Policies, Protocols, and Regulations for Cell-Based Therapies
This article, along with others on similar topics, appears in the following collection(s): 

 by Janko M
rkovacki on A

pril 3, 2015
http://stem

cellstm
.alpham

edpress.org/
D

ow
nloaded from

 

http://stemcellstm.alphamedpress.org//cgi/collection/standards-policies-protocols-and-regulations-for-cell-based-therapies
http://stemcellstm.alphamedpress.org//cgi/collection/standards-policies-protocols-and-regulations-for-cell-based-therapies
http://stemcellstm.alphamedpress.org/


Goldring and B. Kevin Park
Cross, Patricia Murray, Dominic P. Williams, Neil R. Kitteringham, Chris E.P.

Cliff Rowe, Giovanni Pellegrini, Swaminathan Sethu, Daniel J. Antoine, Michael J. 
Danen, Uri Ben-David, Glyn Stacey, Petter Björquist, Jacqueline Piner, John Mills,
Hamdam, Michaela E. Sharpe, Sara Patel, David R. Jones, Jens Reinhardt, Erik H.J. 
Caron, Patrik Sköld, Peter W. Andrews, Melissa A. Baxter, David C. Hay, Junnat
Hopp, Jing Zhou, Roua Baty, Enrique I. Graziano, Bernabé Proto Marco, Alexis 

James A. Heslop, Thomas G. Hammond, Ilaria Santeramo, Agnès Tort Piella, Isabel
Stem Cell-Based Therapies

Concise Review: Workshop Review: Understanding and Assessing the Risks of

doi: 10.5966/sctm.2014-0110 originally published online February 26, 2015
2015, 4:389-400.Stem Cells Trans Med 

 http://stemcellstm.alphamedpress.org/content/4/4/389
located on the World Wide Web at: 

The online version of this article, along with updated information and services, is

 by Janko M
rkovacki on A

pril 3, 2015
http://stem

cellstm
.alpham

edpress.org/
D

ow
nloaded from

 

http://stemcellstm.alphamedpress.org/content/4/4/389
http://stemcellstm.alphamedpress.org/

